
International Journal of Computer Engineering and Sciences Research 
 

VOL. 05, NO. 01, May-June 2023 

Pages 08–36 

Available online at: www.ijcesr.com 

 

Bogala Mallikharjuna Reddy Page 8 

 

Amalgamation of Internet of Things and Machine 

Learning for Smart Healthcare Applications – A Review 

 

 

Bogala Mallikharjuna Reddy 

Center for Research, Innovation, Development, and Applications (CRIDA) 

Jaiotec Labs (OPC) Private Limited 

Amaravati, Andhra Pradesh, India 

 
 

 

Abstract: The Internet of Things or IoT is altering human adaption of hi-tech gadgets in daily life. IoT 

applications are quite broad, ranging from vital applications such as smart cities and health-related sectors to 

industrial IoT. The IoT is critical to the fast automation of the healthcare industry. Collection and processing of 

data are key components of any IoT for healthcare applications. Machine learning (ML) techniques are being 

amalgamated with IoT (IoT-ML) to make the network more efficient and self-sufficient. The amalgamation of 

ML algorithms into IoT is critical because of the massive quantities of information involved in medical data 

management and the significant help that its precise forecasts offer to further improve the public healthcare 

sector. Considering the requirements of IoT and ML, their smooth amalgamation or integration necessitates a 

complete reworking of the communication stack (from starting physical layer to final application layer). As a 

result, the healthcare applications built on top of the upgraded stack will gain popularity greatly, and it will also 
be easier to extensively deploy the network. The present work reviews different state-of-the-art implementations 

of IoT that are being amalgamated with ML algorithms for healthcare applications. Several commonly utilized 

machine learning algorithms in healthcare were discussed briefly, and the amalgamation of IoT and ML for 

diverse healthcare needs was evaluated based on their benefits, capacity, and potential developments. The IoT-

ML healthcare applications such as disease prognosis, diagnosis, infection-spread prediction and regulation, 

monitoring, assistive systems, and logistics control were highlighted. In healthcare, the actual usage of the IoT-

ML model necessitates that it be very accurate and contains several safeguards against security breaches. Both 

advantages and disadvantages of IoT-ML techniques in healthcare were described. In addition, the future 

prospectives of IoT-ML for accurate predictions and effective practical applications in the public healthcare 

sector is addressed. 

Keywords— Internet of Things (IoT); Machine Learning (ML); Healthcare (HC); Disease Prognosis and 

Monitoring; Artificial Intelligence (AI). 

I.  INTRODUCTION 

Without a doubt, health is at the top of our priority list in the life. Humans have always struggled with diseases 
that bring demise; we constantly combat over several illnesses (such as COVID-19, HIV, Cancer, and so on) in 
the human lifetime, while simultaneously and drastically increasing life expectancy and health status. Medicine 
has historically been unable to heal a wider spectrum of diseases in desired time due to several issues such as 
malfunctioning of clinical equipment, sensors, and data analytical tools used to examine medical reports or 
healthcare data [1]. Traditional healthcare monitoring is inefficient, considering the effective usage of both 
resources and time. A skilled doctor must monitor the patient regularly and the analysis outcomes might take 
longer times for the reports preparation. Furthermore, after getting released from the health center, recovering 
patients might have to arrange additional sequel appointments for verifying that if their health is on the right track 
or not. Because everyone expects precision and accuracy in the healthcare industry, regardless of the cost, it is 
vital for individuals and businesses in this profession to provide the best services possible [2]. The need for 
enhanced medical insurance solutions in various health centers is spurred as a result of emergencies such as 
arrival of ambulances at the same time as frequent adversities and automobile crash incidents, as well as ordinary 
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outpatient demand [3]. Hospitals that do not have live or up-to-date real-time tracking information about the 
patients admitted and/or discharged typically struggle in meeting the patients demands, whereas the close by 
institutions may not have many patients. To increase the quality of services (QoS), it is required to have a better 
awareness and proper understanding of new computational approaches to select the ideal methodology that meets 
the expectations of the medical professionals involved. 

The IoT and ML have recently generated a new universal vision of information revolution to construct a robust 
worldwide framework via combining several physical and virtual 'things' with new extensibility and wireless 
communication sensors. The word ‘IoT’ was first destined to employ RFID (Radio-Frequency Identification) 
creative methods to include particularly recognizable things (goods) as well as corresponding electronic system 
devices/components within the frame of networks. Eventually, the catchy phrase "Internet of Things or IoT" came 
into existence for describing a diversity of sensors, including GPS applications, controllers, and telephones, to 
include all types of "things" [4]. The constant integration of all the sensors into an Internet-related platform and 
supporting equipment has produced a number of investigation difficulties, that includes engineering framework to 
knowledge-based data processing and task management and executions. Currently, IoT innovation has made rapid 
progress in wider systematic and automatic controls, notably in healthcare assistance [5]. Because of combining 
IoT and ML (IoT-ML) in healthcare today, the consequence is a move from medical center to residence with 
frequent clinical testing and supplementary health support, as well as making the use of medical equipment 
simpler to physicians, staff, and patients. IoT-ML techniques, mostly in times of emergency, might build 
healthcare more accessible to the people. Furthermore, hospitals might lessen the strain by moving practical 
services and fundamental activities to patent’s home surroundings using IoT-ML technology. 

One main benefit is that the patients might stay away from hospital expenses every time they make appointments 
with the doctor. An additional obstacle is the existing inability of network structure to sustain real-time sensitive 
application tools that employ IoT; hence SDN (Software Defined Networking) is projected as suitable network 
structural design for these type of applications [6]. As a consequence, in the future, a smart technology in the 
healthcare business that needs to be developed to build advanced medical technology and make use of it to 
expediently track patients from different locations. Patients are monitored based on their physical conditions and 
descriptions of their medical requirements [7]. Upon introduction of IoT, there is tremendous increase in the 
number of embedded sensors, medical devices, implants, labels, etc in the healthcare sector. Transportable 
sensors can be utilized with IoT to gain clearer and accurate data. With the help of android software, a 
pharmaceutical record database of patients may be utilized to further enhance the medical device's applications. In 
this correct moment in time, the appropriate deployment of various smart modernizations like IoT can drastically 
transform any industry, particularly the medical profession [8]. The IoT would enhance people's living situations 
significantly. The employment of amalgamated systems would cause several advances in electronic data 
organization services, effective control of communications and improvement of processing systems [8, 9]. There 
are several wearable systems and applications that must be developed in various domains of healthcare [10]. This 
review will outline the vital elements of customized healthcare through the amalgamation of IoT and ML. 
Furthermore, this review discusses prior research studies on IoT and ML for individualized healthcare and 
highlights the relevant concerns and obstacles of the amalgamation of IoT and ML in the healthcare sector. 

II. INTERNET OF THINGS AND HEALTHCARE 

A. Internet of Things (IoT) 

Due to recent improvements in semiconductors and allied technologies such as microelectromechanical sensors 

(MEMS) and other systems, the Internet of Things (IoT) has sparked considerable interest [11].  Throughout the 

years, WSNs (Wireless Sensor Networks) has expanded at an unparalleled rate in terms of scalability, interface, 

interoperability, data computation and applications [12]. These hi-tech progresses, together with other advances in 

wireless/cellular communication networks and RFID (Radio Frequency Identification), have established the 
necessary groundwork for the Internet of Things. In the context of supply chain management, the term "Internet of 

Things (IoT)” was coined by Kevin Ashton in the year 1999 [13]. The IoT is an intelligent network of interlinked 

things/devices (sensors, actuators, computers, and so on) interconnected via internet, every ‘thing’ with a 

distinctive tag and capable of constantly and consistently communicating with one another over the network in a 

common language and cooperatively making smart decisions by analyzing raw data [14]. As a result, IoT is 

concerned with a more elegant object world in which each gadget is linked to the internet [15]. Each of these 

elements, identified as ‘things’ in IoT, have unique electronic identifications and can therefore be remotely 

managed, controlled, and organized, expanding their scope beyond their physical bounds. As the production of 

smart things has expanded, IoT has enhanced nearly every aspect of our daily lives, and it continues to do so 

through a varied array of new, imaginative, and clever application tools [16]. As shown in Figure 1, some IoT 

applications comprise smart cities, smart healthcare, automobiles, smart agriculture, fleet trafficking, and 

wearables [12]. 

 



 International Journal of Computer Engineering and Sciences Research 

Bogala Mallikharjuna Reddy Page 10 

 

 

Fig. 1. Applications of Internet of Things (IoT) 

 

B. IoT in Healthcare 

Conventional healthcare monitoring is inefficient in terms of both resources and time. Physician normally checks 
patient and sometimes the diagnosis results might often take many days to get ready. In addition, after the patient 
gets discharged, improving patients might need to arrange some sequel visits to the hospital for verifying that 
their health is on the right track or not. Healthcare systems aid hospitals in reassigning out-side/waiting patients 
quickly to low crowded alternate patient-handling hospitals [17]. They improve the count of patients receiving 
sufficient medical treatment. A healthcare organization may resolve the frequent problem of unanticipated 
adjustments in hospital patient rushes. The need for better medical assistances at several hospitals is generated by 
crisis situations such as ambulance influx throughout natural calamities and automobile mishaps, as well as 
ordinary outpatient demands [3]. Hospitals that do not have concurrent records on patient inflow typically 
struggle to fulfill requisition, whereas close by clinics may contain fewer patients. With the rise of IoT, these 
challenges are being addressed methodically. 

The IoT has spurred significant attention in the healthcare technology driven society in recent times. The 
healthcare area is extremely practical, and IoT brings up wider chances to further improve it. The IoT connects 
virtual computers and physical items to enable communications. It collects information in real-time by utilizing 
cutting-edge microprocessors. IoT uses wearable and implantable devices to continuously monitor patients' 
health, independent of time or place. Numerous modern medical gadgets and sensors may communicate via 
different networks, allowing an opportunity to obtain vital data regarding the health status of patients. This 
medical data may subsequently be utilized for different purposes, such as for remote patient monitoring, 
anticipating disease and recovery through enhanced symptom understanding, and overall enhancing of the 
diagnostic and treatment via increased automation and portability. As a result, in modern times, IoT has generated 
much excitement in the healthcare IoT field. 

Among the most essential uses of IoT is the provision of universal and real-time healthcare services [18]. Medical 
systems must be linked to a WiFi (wireless communication) network to execute numerous important computer 

operations. Intelligent medical equipment can only be supported by IoT, which employs the recently released 

robust 5G wireless connection technology. Under the umbrella of IoT, wider components like people, machines, 

and objects, are connected to information space at anyplace in the world during all the times. The healthcare 

industry is incredibly practical, and IoT provide a plethora of possibilities to enhance it. The expansion and 
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growth of IoT are vigorously revolutionizing the healthcare sector by launching smart healthcare systems (Figure 

2), in which medical staff and equipment are linked via a global network that anyone, anywhere, and at any time 

can access [11]. Numerous contemporary clinical sensors and devices may hook up to diverse networks, enabling 

right of entry to vital patient status information. This input data may later be used for several applications, 
including distant monitoring of patients, illness and recovery prediction through improved symptom 

comprehension, and overall diagnostic and treatment process enhancement through greater automation and 

portability [19]. 

 

 

 

Fig. 2. Some important healthcare applications of IoT 

 

C. Healthcare IoT Architecture 

A healthcare IoT system is a complex network of all accessible health related data resources that are linked to one 
other for speedy data transport via the internet [20]. This implies that many medical resources, including 
hospitals, physicians, rehabilitation centers, and all healthcare sensors and devices, as well as patients, will be 
linked together for uninterrupted real-time information flow. The different sensors and actuators, in conjunction 
with the programs that infer their signals, can identify abnormalities and communicate patient information to 
hospitals/clinical practitioners for prognosis and examination, following which remedial operation may be 
recommended and implemented. As a result, IoT is a real system with relevant objects connected to network and 
allows remote items to be detected, analyzed, and managed. The healthcare applications of IoT began with 
attempts to establish connections with monitoring systems of isolated patients. Since then, investigation on 
different healthcare benefits of IoT has been steadily increasing, and current studies intend to incorporate IoT in 
numerous parts of healthcare, such as disease control, disease spread, efficient automated prognosis, and 
enhanced therapy. 
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Intelligent wellness, intelligent grid, and smart infrastructure (smart towns/cities, smart houses and hospitals, 

smart ambulance/transit, and so on) are all examples of IoT deployments. A computational framework has been 

designed to connect edge computers, allowing wearable sensors and intelligent gadgets to interact seamlessly. The 

layered architecture of IoT for healthcare applications is depicted in Figure 3a. In the five healthcare tiers with an 
back-to-back network, the core architecture of IoT generally includes (i) perception, (ii) network, (iii) support, (iv) 

application, and (v) business layers. The perception stage is in charge of collecting medical information from 

numerous sensors/devices appended to the test/patient subject that has to be supervised or inspected. The network 

layer is in charge of transmitting big data (BD) received from different sensors and relayed throughout the 

internet. The support layer uses computational techniques to examine information stored in websites/servers to 

create the appropriate response (decision-making). Smart devices rely heavily on computational methods 

(machine learning models) applied at this layer for the successful processing of healthcare information, as 

illustrated in Figure 3b [8]. The application stage is responsible for the compilation, visualization, and assessment 

of calculated results. The successfully proven models are systems handled in the business layer for commercial 

healthcare applications all around the world. 

 

 

 

Fig. 3. A schematic of healthcare IoT’s (a) architecture and (b) information processing 

 
Despite the tremendous potential of IoT in healthcare sector, both IoT professionals and physicians are concerned 
about information security, massive data management, and data analytics [21]. Millions of sensors/devices are 
now attached to patients, constantly monitoring and gathering physical, environmental, behavioral, and 
physiological data. New developments also point to the appearance of medical super sensors with increased 
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processing and memory power that may use the Improved Particle Swarm Optimization (IPSO) programming 
code to aid in precise delivery of drugs to various human body parts, identify if the drug has been delivered to the 
intended target-specific region of patient’s body, and perform a variety of other tasks [22]. Obviously, these 
sensors/devices produce huge volumes of information every second. Big data (BD) deals with a vast quantity of 
heterogeneous data that is extremely redundant and linked [23]. In the simplistic scenario, all of this information 
must be dispatched to a unified web server for data mining and examination, introducing risks like network 
blocks for information transmission, inadequate computational resources, and power for real-time data 
examination. Numerous solutions were proposed to the aforementioned issues, including deletion of duplicate 
information and anomalies on the personal/local computer, accumulating the information prior to transferring it, 
performing an essential investigation via light mobile artificial intelligence (LMAI) models, and uploading data 
only if the findings indicate a trouble [24]. There have been more big data strategies employed for the 
examination of vast healthcare information from various sources in the smarter IoT-based healthcare sector. ML 
is a major strategy among these technologies for doing intricate studies, clever judgments, and ingenious 
problem-solving approach for working on handling large amounts of information. Many investigations have 
looked into the implementation of IoT in conjunction with ML to monitor patients with medical issues and IoT-
ML ensures the data integrity. 

III. MACHINE LEARNING AND HEALTHCARE 

A. Machine Learning 

 

 

 

Fig. 4. A classification flowchart of machine learning techniques 

 

Machine learning (ML) is a computer innovation inevitably related to artificial intelligence (AI) research. ML 
enables a computer system to grasp and examine the collection of inputs (raw data) on its own, without any 
involvement of human interaction [25]. Training and testing are critical phases in the development of a successful 
ML model. The training phase (which is highly research-intensive) involves giving the system marked or 
unlabeled inputs. These training inputs are then kept in the feature space to be used in potential predictions. 
Lastly, during the testing stage, the computer system is given an unlabeled input and is expected to predict the 
correct outcomes. Simply, machine learning predicts results for unlabeled input using known data from its feature 
space. As a consequence of its previous experiences and understandings, a competent ML model can anticipate 
outcomes. The precision of its output as well as model training determines the accuracy of such a model. ML is 
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considered as revolutionary technology for healthcare transformation. Machine learning is the execution of 
algorithms that can learn from a given input or raw data. Big data and inexpensive computing resources drive 
machine learning development. Hence, machine learning is based on past observations made by machines and the 
relevant algorithms are created to incorporate them. In the most elementary sense, ML is derived from outcomes. 
Machine learning seeks to discover patterns in the healthcare data and it uses the learned patterns to make 
meaningful judgments [26].  Machine learning is a comprehensive multidisciplinary method that includes algebra, 
statistics, data collection, data examination, and so on. ML is a fundamental AI technology that draws knowledge 
via training of the input medical data. 

B. Classification of ML Techniques 

ML is divided into three types (i) supervised learning, (ii) reinforcement learning, and (iii) unsupervised learning, 

as shown in Figure 4 [27]. Every ML type includes numerous general algorithms [17]. This section describes 

extensively used ML algorithms for IoT healthcare prediction and categorization. Few examples of important 

machine learning methods comprises of Nave Bayes,  K-Nearest Neighbor, Support Vector Machine (SVM), 

Gradient Boosted Regression Tree, Random Forest, Neural Networks, and Decision Trees,. All of these important 

ML strategies, in addition to others, will be explored and discussed in the following sections. 

1) Supervised learning : The most significant ML design type is the supervised learning algorithm. This is 

mostly employed for assisting real-time applications of world [28]. Supervised learning model is utilized to 

anticipate results based on specific input sets and input/output instances. Each supervised training dataset has an 

input vector, a couple of input goals, and a supervisory signal, which is the expected output value. Following an 

examination of the training datasets, they are utilized for training ML model to get an inferred function 

(classifier). The purpose of supervised learning training algorithms is to assess the worth of one or more outputs 

based on a variety of input attributes. One distinguishing characteristics of the supervised learning model is the 

involvement of humans. The human role is vital to create a set of data that will ultimately work independently 

by learning and generalizing from the input cases. To generate a set of data, the ML model is given the first few 

pairs of inputs and intended outputs (training involves humans). This model then figures out how to generate 

outputs on its own. The primary challenge occurs if the model is asked to anticipate the consequence of a fresh 

input with no assistance of humans. As a result, assuring the accurateness of the anticipated model is crucial. 

Besides its clear success, supervised learning also has the disadvantage of necessitating a massive quantity of 

labeled information to produce a bulk-scale labeled set of data [29]. In classification and regression, supervised 

learning methods are commonly used. In contrast, this review will talk about the categorization using supervised 

learning process. Classification/prediction is the fundamental purpose of employing ML algorithms. To identify 

and forecast class labels, these algorithms use a specified set of instances. Classification samples are either 

completely categorized or do not fit into any classification. They are not categorized in any form. Missing 

values wreak havoc on the prediction and classification algorithms. The two methods of classification 

(supervised learning) are: (i) binary and (ii) multiclass. The binary classification is concerned with two classes. 

The input data is divided into these two classes. For instance, establishing YES/NO classification or prediction 

of e-mails into spam and non-spam types. The digits 0 and 1 represent these prediction classes. In contrast, 

multiclass classification concerns about three or more anticipatable classes. Determining the stage of tumour is 

another example. Classes are denoted by the numbers 0, 1, 2, and so on. Specific phases are often necessary for 

supervised learning, such as (i) data collection, (ii) data preparation, (iii) model selection, (iv) model training or 

validation, (v) model assessment, and (iv) prediction of outcomes [17]. 

2) Unsupervised learning : Unsupervised machine learning can identify hidden features within unlabeled 

data. This has been employed in many successful applications; nevertheless, evaluating these applications might 

be challenging at times. This is because of insufficient experience in unsupervised ML. As a result, there are no 

reward or errors indicators to assess potential solutions. The signal (reward) differs between supervised and 

unsupervised ML in this situation. Unsupervised learning is used in statistics to approximate density. ML 

models  such as self-organizing maps (SOM),  adaptive resonance theory (ART), and neural network (NN) 

involve unsupervised learning [17, 25]. Unsupervised learning entails manipulating and grouping datasets. Data 

in the dataset are modified during the transformation process to show them in a different, fresh form that people 

and machine algorithms can understand. Clustering models partition sets of data into meaningful catagories of 

correlated elements. K-means clustering is the most familiar and simpler unsupervised technique that discovers 

groups of linked data. The first stage in this strategy is to allocate every data point to the adjacent cluster center, 

and the second stage is to designate every cluster center as the mean of the data points selected near to it. The 

determination of successful outcomes in unsupervised learning is a fundamental challenge. Unsupervised 

learning success reveals whether or not the algorithm learned anything useful. Because unsupervised learning 

does not provide labels or outputs, the right output is uncertain. As a result, determining algorithm performance 
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becomes very difficult. As a result, unsupervised learning is only utilized for exploratory objectives like 

enhancing data comprehension. Another essential aspect of unsupervised model is that it can be the preparation 

stage for supervised models. Identifying a novel model type for representation of data may enhance the 

performance of supervised models. 

3) Reinforcement learning : Machine learning also includes reinforcement learning. This is in relation to 

taking proper behavior for maximizing the benefits in certain situation. Various apps and computers utilize it to 

evaluate the best probable action or course of action to take in a particular event. Reinforcement learning differs 

from supervised learning in that the training data contains the solution key, allowing the model to be trained 

with the correct answer; however, there is no answer in reinforcement learning, and the reinforcement agent 

selects what to do to fulfill the given task. In the lack of a training dataset, it is compelled to learn from its own 

experience. The initial stage from where the model will begin should be provided as input.  The model will 

return an outcome depending on the input, and the user will select whether to reward or penalize the model 

based on its output. The model is always learning. There are several alternative outputs since there are numerous 

solutions to a certain problem. The optimal answer is determined by the highest possible payment. So, 

reinforcement learning is all about making successive judgments. In basic terms, the output is determined by the 

state of the current input, and the next input is determined by the output of the previous input. Because the 

decision is contingent on reinforcement learning, the user assigns tags to sequences of related decisions.  

Through interaction/labeling, RL may be employed in machine learning and huge data processing. It is made up 

of a collection of algorithms like Q Learning and Monte Carlo methods. Park et al. presented the automatic 

diagnosis of large numbers of patients utilizing IoT devices and Q-learning method [30].  Zhao et al. used 

reinforcement learning to provide directions for crowds in a smart city. Such a technology might be critical in 

lifting of lockdowns all through COVID-19 pandemic crisis, while adhering to social distance standards [31]. 

Dourado et al. employed a Deep RL-IoT model to identify strokes using topographic pictures of the skull [32]. 

Similar models were employed by Liu et al. to identify lung cancer [33]. 

C. ML Techniques for Healthcare 

 

 

 

Fig. 5. A depiction of ML models: (a) DT, (b) KNN, (c) NB, (d) SVM, (e) NN, & (f) RF 
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Scientists have designed and utilized several popular ML models for prediction/classification processes. Some 

of them, as shown in Figure 5, are explained in subsequent sub-sections [17]. 

1) Dimensionality reduction algorithms (DRA) : DRA is a collection of algorithms that take huge amounts 

of data as input, detect patterns and correlations in them, and produce a considerably smaller set of data (in 

regards to the number of dimensions) without compromising any critical information originally provided. This 

removes redundant data, mistakes, and certain components of data that are highly connected. Substantial 

promises have been made for the identification of Parkinson's disease and breast cancer by combining IoT with 

DRA such as linear discriminant analysis (LDA) [34]. The need of combining IoT with DRA to improve 

diagnostic skills is greatly highlighted in the literature [35]. 

2) Discriminant Analysis : Discriminant analysis (DA) is a form of DRA that projects a set of data points 

into a space with lower dimensions in such a way that the classes are correctly segregated into non-overlay 

groupings. When just two groups are involved, this classification is comparable to multiple regression, but it 

becomes more sophisticated with the increase in number of groups. DA is used in healthcare to determine a 

patient's disease prognosis and severity. LDA finds combination (linear) of characteristics to classify, whereas a 

more generic MDA (multiple discriminant analysis) does the similar task in a non-linear space. 

3) Linear Regression  : It is a modeling procedure that finds a link connecting independent and dependent 

variables via a linear approach. It is preferred when there are just continuous independent variables. There are 

several strategies for creating a linear regression model, the most prevalent of which are conventional least 

squares and gradient descent. The former attempts to discover the coefficients by directly minimizing the total 

of squared errors, whereas the later utilizes a repetitive technique to minimize the total of squared residuals. 

4) Logistic Regression: Logistic regression (LR) is a probability-related method whose sigmoidal function 

serves as the cost-function and has a value from zero to one. There are two kinds of logistic regression. When 

classifying observations into two groups, binary LR method is employed, but multinomial logistic regression is 

used when classifying more than two groups. When the dependent variable in the regression issue is 

dichotomous, logistic regression is extremely useful. 

5) Support Vector Machine (SVM) : The notion of a classifying hyperplane is used in this technique. The 

aim is to discover a plane that divides the data into two parts/groups, while keeping the difference between the 

data points in the two groups as minimum as possible (Figure 5d). The maximum range is claimed for this 

hyperplane. Data on opposite regions of the hyperplanes are allocated to distinct groups. The size of the 

hyperplane is determined by the quantity of considered features. Here, the hyperplane is just a line for features 

with a number less than or equal to two. It converts to a two-dimensional plane for three features, but imagining 

it for larger than three features gets very hard. SVMs have the benefit of being particularly resistant to excess 

fitting concerns. SVMs can classify datasets using linear functions and it can also classify them via non-linear 

kernels. Ginantra et al. provided a SVM stereotype in which a classifier performed better than rest of classifiers 

in determining if a person has an influenza-type illness (ILI) i.e., acute respiratory infections [36]. SVM is the 

most precise method in position confirmation with no need for channelling of features data [37]. SVMs were 

also utilized to create approaches for tackling the challenge of classifying healthcare implant materials [38]. 

6) K Nearest Neighbors (KNN) : The notion of a classifying hyperplane is used in this technique. The goal is 

to find a plane that separates the set of data into the k-closest neighbors. The distance is obtained by considering 

the difference between the attributes of the neighbors and adding them together (Figure 5b). The vote is carried 

out to identify which group the bulk of the k-closest neighbors will be categorized into for the chosen data. The 

k-value is decided by the procedure of tuning of the parameters. It is normally selected to be close to the square 

root of the sum of items number. The k-value is usually an odd number to reduce numerous categories receiving 

equal votes. KNN is useful for categorization of data (labeled) even if the data from training set is tiny. This is 

extensively utilized in a variety of ML applications. To predict cardiac attacks, researchers used KNN model on 

the medical data received from devices employing IoT [39]. KNN was utilized to extract information obtained 

from 20 k-closest devices/sensors to determine the locations of various joints located within the body [40]. KNN 

classifiers were then employed with Minkowski and Euclidian distances for forecasting the present behavior of 

the users. Once categorization for a number of activities is created, this has a lot of promise for application in 

fitness measurement. Azimi et al. proposed estimating missing/lost points of data gathered to track pregnant 

women using repeated KNN imputations [41]. This program may be utilized with confidence as a healthcare 

B2C assistance or as a accessory for maternal health research. Hossain et al. demonstrated other activity 

measuring appliance that used LoRaWAN sensors and an accelerometer for recognition that employed KNN 

model with an accurateness of 80% [42]. 

7) K-Means : K-means identifies items based on whether they fall within the limits of a certain class. As a 

result, categorization is limited to "similar" and "dissimilar" types.  Using Euclidean distances, the centroid of 



 International Journal of Computer Engineering and Sciences Research 

Bogala Mallikharjuna Reddy Page 17 

the cluster for every category is identified, and a new item is simply classified according to the distance from 

each cluster. This method is employed by a number of web browsers and wireless sensor network (WSN) 

platforms. K-means categorization is also used in a number of other sectors, such as deploying wireless 

wearable networks to diagnose injuries within soldiers when they are away from their stations during a war and 

tracking ECGs of patients using data collected by wearable IoT nodes [43, 44]. Sood and Mahajan proposed 

employing fog computing and fuzzy k-means to track the likelihood of disease transmission and to give remote 

diagnostics for a chikungunya pandemic [45]. This is a tried-and-true system that might be expanded to include 

monitoring of COVID-19 patients data.  Kim et al. also demonstrated the use of k-means clusters on MRI 

images for information extraction to speed up the detection of brain tumors [46]. 

8) Decision Tree (DT) : A decision tree (DT) consists of three parts: leaf nodes, core nodes, and branches 

that signify decision rules, outcomes, and attributes (Figure 5a). The entropy and Gini index are two tools often 

used for data classification. Cho utilized DTs to monitor people's locations during the pandemic [47]. Using 

pulse amplitudes and intervals as characteristics, Xie et al. created a system for classification of heartbeat that 

recognizes PVC (premature ventricular contraction) to identify arrhythmia [48]. 

9) Random Forest (RF) : DTs change depending on the used data to train them. When the training data for a 

decision tree is changed, the outcomes vary greatly. This algorithm has a high computational cost. Because 

turning back after splitting is impossible, local optima are usually determined. These constraints are addressed 

by the random forest (RF) approach (Figure 5f). Several decision trees are trained concurrently in this model to 

create a single result. This type of decision tree merging is known as ‘bagging’. Al Hossain et al., for example, 

revealed how a RF model surpassed other models with accuracy of 95% in forecasting the total number of 

persons contaminated with influenza virus at community locations [49]. It has a high accuracy since it can 

collect the results of all DTs. Gupta et al. developed a RF classifier model that beat SVM, DT, and KNN in 

detecting aberrant crowd movements with 77.8% accuracy [50]. 

10) Naive Bayes (NB) : The Bayes theorem serves as the conceptual foundation for NB classification (Figure 

5c). The term 'naive' relates to the assumption that every feature is independent of other. The information is 

separated into a response vector and feature matrix. The feature matrix rows reflect the entire collection of data 

as vectors, each one symbolizing a different kind of variable. Aternatively, every response vector row indicates 

a resultant group. Assery et al. and Sadhukhan et al. described cases in which NB surpassed all other classifiers 

in classifying tweets, which can aid in the management of social networking concerns during catastrophes or 

pandemic times [51, 52]. 

11) Gradient Boosting & Adaboost : For typical scenario of poor beginners, the precision of learning is 

roughly equal to that of a random result generator. As a result, combining these learners with more than one ML 

models to generate a powerful learner is an excellent method to use them. Ensemble learning is another term for 

utilizing several learners for training a model. Boosting is one example of an ensemble learning strategy in 

which decision boundaries are created for each weak learner and weights are assigned depending on how 

effectively the borders are categorized or assessed from the data. The procedure is continued till a good 

prototype is obtained. Adaboost assigns equal weight to each observation (for the first boundary) at the start, 

then increases the weights for poorly identified items and changes the borders correspondingly until all 

observations are correctly categorized. Many borders (learners) are continuously formed in gradient boosting, in 

such a way that every successive learner accounts for part of the faults of the prior one. With 92.1% accuracy, 

extreme gradient boosting may detect irregular cycles in cardiac patients [53]. Similarly, wearable gadgets 

speech signals may be employed to perceive early indicators of PD (Parkinson's disease), while prognostic 

analytics may be utilized to identify diabetes in customers [54, 55]. Constricted IoT healthcare systems may also 

be utilized to identify seizures efficiently [56]. 

12) Convolutional Neural Network (CNN) : CNN is a feed-forward network utilized for classification type 

problems [57]. It seggregates the input data into components and sends the components to a convolution layer 

(Figure 5e), which combines them in various ways till patterns appear (or convolution occur). The input images 

are then mapped against these patterns by a rectified linear unit (ReLU) layer, which finally proceeds them to a 

pooling layer. The pooling layer compresses the map to form a pooled feature map, which is flattened into a 

linear vector and supplied into a fully linked network to classify the input. CNNs are widely utilized in 

applications that demand visual understanding of images having a grid-like architecture.  Alhussein et al. 

interpreted brain wave data obtained as a 2D time series to predict epileptic events and warn health officials 

immediately [58]. Ke et al. suggested using raw EEG (electroencephalogram) data to assess patients suffering 

from depression with Lightweight CNN [59]. Ciocca et al. employed images to identify food and calories of 

consumers, which have applications in fitness and  nutrition [60]. Alhussein and Muhammad employed deep 

learning on pitch tones to diagnose vocal disorders utilizing mobile healthcare frameworks [61]. Using the 
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LUNA16 dataset, Bansal et al. suggested a RESNET-based framework for 3D segmentation of images and 

classification of lung cancer, attaining high accuracies for segmentation (92.7%) and lung cancer detection 

(88.3%) [62]. 

13) Artificial Neural Network (ANN) : An artificial neural network (ANN) is a ML model which mimics the 

process of learning of the human brain. It contains (i) an input layer that collects the information to be 

processed, (ii) numerous layers that analyze the data, and (iii) an output layer that gives the output. In ANNs, the 

hidden layers accept intermediate inputs, allocate a random weight and bias to each input, and compute different 

weighted sums, that are then transferred via other layers (with weights and sums) till they get to the final layer, 

which determines the output using an activation function. Whenever the outputs are incorrect, they are sent back 

to the earlier layers in compliance with a cost-function to adjust the weights before suitable responses are 

obtained. ANNs are extremely dynamic and also have implications in pattern classification. Kim et al. used an 

unobtrusive ANN strategy that employed IR sensors set all through the house to track sleep, bathroom time, 

excursions, and movement to detect symptoms of unhappiness in elderly people via evaluating information 

obtained through telecom information [63]. Back propagation ANN was proposed by Bhatia and Sood to 

forecast stochastic health condition risks during exercise [64]. Sood and Mahajan [65] and Humayun [66] 

employed a fog-layer architecture to recognize and regulate hypertension (BP) outbursts and to handle 

information relevant to heart symptoms in patients, respectively. Hassija et al. created a traffic estimate system 

using a neural network-based smart connection in combination with a blockchain network [67]. 

14) Natural Language Processing (NLP) : NLP is the use of machining learning techniques to teach 

computer systems to comprehend and understand normal human language, text, and speech. Its language mining 

qualities help handling and quantifying unstructured data quite straightforward. Some of the most popular NLP 

libraries available today include NLTK,  Scikit-learn, TextBlob, and spaCY. NLP implementations go further 

than their reliance on text or image data to collect information and are thus used in a wide range of applications, 

including food consumption and nutrition tracking, along with assessing the patient's emotive response to 

medicine ingestion [68. 69]. Amin et al. advised using NLP to evaluate facial expressions, speech, movement, 

etc in actual live data via smart city networks to diagnose patients and provide them with essential crisis aid 

[70]. This method has also been used in a variety of psychological applications, where NLP was applied to 

information from both social networks and IoT applications [71].  

15) Cognitive Automation (CA) : Cognitive automation (CA) is a subset of artificial intelligence. It employs 

modern automations such as emotion detection, data mining, cognitive reasoning, and NLP to mimic human 

intelligence. Cognitive automation uses technology to solve issues in an attempt to mimic human intellect. It 

serves as a driving force behind the efficient and enhanced responses provided via an AI tool. CA, by providing 

a better collaborative stratergy to healthcare IoT, aids in implications requiring the concurrent usage of 

biiological and emotional systems for coping with healthcare crises. Muhammad et al. created a 5G CA-based 

medical surveillance system which might revolutionize medical systems, particularly in smart cities, through 

concurrently operating database and resources cognitive system [72]. Alhussein et al. investigated CA-based IoT 

architectures designed for surveillance and recognition of epilepsy [58]. 

Table 1 covers all of the ML approaches discussed in the preceding sections [17]. ML techniques are utilized for 

analyzing, evaluating, and gathering information from collected data as well as enhancing decision-making 

processes because once taught, they do not require any further supervision and can execute their duties 

independently. Machine learning algorithms assist in distinguishing tough and wide trends of information and 

records them. This approach is ideal for medical applications, particularly for those dealing with highly 

developed genomics and proteomics. It can be utilized to diagnose and detect additional disorders. DL (deep 

learning) algorithms are employed in healthcare sector to advocate the adoption of advantageous healthcare 

plans to offer a preferred patient treatment service [27]. In many ways, ML can be used in healthcare, like (i) 

disease identification and diagnosis, (ii) personalized treatment/conduct change, (iii) pharmaceutical discovery 

and manufacturing, (iv) cliniical testing and illness evaluation, (v) radiology imaging (MRI, CT scans, etc) and 

nuclear medicine (radiation therapies), (vi) smart electronic medical reports (EMR), and (vii) pandemic outburst 

prediction [26]. By 2025, the economic outcomes of ML approaches in big data research, i.e., ML-dependent 

platforms and solutions, is predicted to be from $ 5.2  to $ 6.7 trillion per year [73]. This highlights the need for 

machine learning in huge data sets, particularly in IoT. ML enables IoT to understand concealed features in big 

data for successful forecasting and reinforcement systems. Recently, medical systems have incorporated ML-

based methods to improve IoT applications, such as automated devices that assemble medical information, 

anticipate illness diagnoses, and conduct real-time patient monitoring. On various clinical datasets, different ML 

algorithms perform differently. Because projected results differ, overall outcomes may suffer. During the 

clinical decision-making process, the variability in prediction outcomes become more apparent. Despite 
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extensive research in big data and ML, the IoT healthcare industry has made limited progress in ML-based 

solutions for large data examination. Understanding the ML methods used in medical systems to handle IoT 

medical data is therefore very crucial. 

TABLE I.  A LIST OF MACHINE LEARNING ALGORITHMS, USED METHODS, ADVANTAGES AND DISADVANTAGES. 

ML Algorithm Purpose Type Used Method Advantages Disadvantages 

KNN Classification, 

Regression 

 

Euclidean distance 

(using continuous 

variables) 

 Hamming distance  

(using categorical 

variables) 

Non-parametric method. 

Perceptive to recognize. 

Simple to execute. 

Do not need precise 

training. 

It is simple to adjust to 

changes by updating its 

set of labeled 

observations. 

Calculating the similarity 

between datasets takes a 

lengthy time.  

Because of the skewed 

datasets, performance 

suffers.  

The performance is 

affected by the 

hyperparameter selection 

(K value).  

Because information 

may be lost, we must 

employ homogenous 

characteristics. 

NB Classification 

(Probability-based) 

Maximum likelihood  

(using continuous 

variables) 

Data searching via 

inspecting every feature 

independently. 

Acquiring easy per-class 

data from every 

characteristic aids in 

improving the 

correctness of the 

assumptions. 

Small quantity of 

training input 

information is required. 

Variances of the 

elements for every class 

are determined. 

DT Prediction, 

Classification, 

Regression 

Decrease in Variance 

(Continuous Target 

Variables) 

Gini Impurity 

(Categorical Target 

Variables) and involves 

strong prepruning 

Simple to execute.  

DTs can work with both 

categorical and 

continuous 

characteristics.  

Little to no effort is 

required for 

preprocessing of data. 

Iteratively improves 

prediction performance. 

The training dataset is 

sensitive to the 

unbalanced dataset and 

noise.  

Costly, and requires 

large memory. 

To avoid variance and 

bias, the depth of the 

node must be carefully 

chosen. 

It is necessary to fine-

tune the parameters and 

may take some time to 

train.  

To avoid variance and 

bias, the depth of the 

node must be carefully 

chosen. 

RF Regression, 

Classification 

Bagging Lower correlations 

between decision trees. 

Increases the 

performance of decision 

trees. 

Working with multi-

dimensional, scanty 

information is difficult. 

SVM Nonlinear 

Classification, 

Classification (Binary) 

Kernel trick, Soft 

margin, Decision 

boundary 

More efficient in 3-D 

space. 

Employing the kernel 

gimmick is SVM's true 

strength. 

Choosing the kernel 

gimmick and the 

optimum hyperplane is 

not simple. 

NN Prediction, Mapping CNN, RNN (Recurrent 

Neural Networks), DL 

(Deep Learning), (MLP 

Multilayer perceptron) 

Storing data throughout 

the whole network. 

Capability to operate 

with limited knowledge. 

Fault tolerance and 

distributed memory are 

added advantages. 

Ability to perform 

parallel processing. 

It is dependent on the 

hardware utilized. 

The network's behavior 

is unexplained. 

Determining the best 

network structure is 

often difficult. 

Difficulty in 

communicating the 

problem to the network. 

The network's lifespan is 

unknown. 
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IV. AMALGAMATION OF IOT AND ML  

As described in the preceding sections, both IoT and ML approaches have been used in a variety of smart systems 
made up of many smaller components, each delivering a unique function. A better healthcare service may be 
delivered to the public by amalgamating or merging IoT with ML (or IoT-ML). Computer vision, reinforcement 
learning, natural language processing, computer networks, and common logical methods are used in smart 
healthcare systems.  

A.  IoT-ML HC Applications 

Several published papers detail the uses of IoT-ML in healthcare (HC) [74]. Figure 6a depicts the key components 

of IoT-ML for healthcare (HC) applications (fast diagnosis/prognosis of many kinds of diseases, real-time 

monitoring of patients health, and individual specific assistive care of patients). With the advancement of artificial 

intelligence software analytical tools, wireless internet technologies (like 5G), and robust medical data storage and 

handling systems, it is possible to effectively extend the IoT-ML to solve the crucial persistent and challenging 

healthcare problems and offer better services as needed. Figure 6b depicts many human body organs/parts where 

IoT-ML strategies are successfully used to identify HC solutions, such as illness detection, patient behavior 

analysis, and assistive care guidance. Disease diagnosis is often accomplished by determining the type of ailment 
that the patient is currently experiencing through the evaluation of symptoms detected by sensors. The sections 

that follow offer an overview of IoT-ML research conducted to improve HC systems.  

 

 

 

Fig. 6. A depiction of IoT-ML (a) components and (b) human organs for HC applications 

 

1) Cardiovascular Disorders : Heart disease is one of the top causes of death throughout the world. 

Forecasting cardiac disease is a difficult endeavor. Nevertheless, the incorporation of IoT into medical systems 

has demonstrated as a great method of monitoring patients' health and detecting the irregularities. Body 

temperature, blood pressure, ECG, and heart pulse sensors data are the most regularly utilized ML input. The 

electrical activity of heart at rest is represented by ECG signals. It may be utilized to make assumptions about 

heart (cardiac beat rhythm and rate), and it may be utilized to diagnose heart enlargement caused by higher heart 

beat rate, high blood pressure, heart attacks or dysrhythmia. Gupta et al. [75] proposed employing wearable IoT 

technology to monitor numerous metrics in real-time to identify cardiac problems using an ML-based model. 

This case study's goal was to employ simultaneous temperature, ECG, and pulse supervision as data inputs to a 

trained forecasting ML model to predict whether or not the customer is at danger for any cardiac illness or 

arrhythmia. The pre-refined clinical data was divided into testing dataset and training datasets, with learning 

algorithm performed on the training data. The accuracy, hit rate, and other characteristics of various classifiers, 

including SVM, KNN, NB, RF, and DT, were assessed. Then, hardware prototypes for gathering of data, 
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connectivity to cloud, and, most significantly, simultaneous forecasting were created. Khan [76] presented an 

IoT healthcare system that uses modified deep CNN to evaluate cardiac problems (MDCNN). A wristwatch and 

heart monitoring device was utilized to capture ECG and blood pressure data, which was then communicated to 

the webserver through LoRa. Depending on the submitted data, the MDCNN model evaluated the patient as 

having a healthy or an irregular cardiac situation and notified the clinician if an anomaly was detected. Using a 

bio-inspired optimization technique, the most significant characteristics for assessing cardiac disorders may be 

chosen (BIOA) [77]. The adaptive elephant herd optimization technique was utilized to optimize the weight 

values for the IoT-ML model. Finally, an AD8232 sensor was employed to collect ECG data. Interfacing was 

accomplished using a Raspberry Pi, which transmitted data to the cloud-based server through an SX1272 

900MHz LoRa antenna. Azariadi et al. proposed employing ECG monitoring and categorization on an 

integrated IoT network to diagnose cardiac disease [78]. The created model might be employed with wearables 

(smart sensing devices) for ECG diagnosis, allowing for round-the-clock monitoring. For feature extraction, the 

discrete wavelet transform method was applied, while SVM was used for classification. After that, the technique 

was developed and deployed on Galileo (Intel's IoT Arduino board). The average accuracy of this approach for 

cardiac diagnosis was 97%. 

2)  Lung Cancer  : Lung cancer is the high frequent tumor, accounting for ~1.8 million fatalities in 2018 

[19]. Valluru and Jeya introduced a model depending on optimum SVM for categorizing CT (computed 

tomography) images of patient’s lung and for diagnosing lung cancer using optimized SVM parameters [79]. In 

this SVM model, features collection was accomplished by changing the GWO (grey wolf optimization) 

technique, which was associated with a genetic approach (GA). The entire lung cancer detection process is an 

easy linearly detachable problem with multi-dimensions, and the conversion is dependent on the SVM’s kernel 

function. The provided approach produces superior results on each test image, while many other factors are also 

considered. Above all, it obtains a mean classification accuracy value of ~94%, which is obviously greater than 

the comparison techniques, i.e.,  GA, BPSO, and BDE. Extensive analysis of test images shows that the 

suggested approach may be effectively utilized in simultaneous information processing in clinics and healthcare 

facilities. This suggested approach may be enhanced more by including DL models. 

3) Neurological Disorders  : EEG-based monitoring is very important way through which smart healthcare 

systems may help with patient monitoring for neural illnesses like Alzheimer's disease and epilepsy. It is a 

diagnostic technique that utilizes electrodes that are placed on the scalp to identify electrical impulses in the 

human brain. Magnetoencephalography (MEG) is another sort of cerebral signal imaging method, which has not 

been widely employed for diagnosis of neurological disorders in patients. MEG signals are not much dampened 

than the signals of EEG, making them a useful analytic tool. Amin et al. developed a cognitive IoT architecture 

for EEG-based disease  identification [70]. In this architecture, multi-dimensional information from the 

electrodes of EEG were refined and delivered to a cloud-based intelligent cognition system, which assessed the 

neural condition of the patient and communicated this information to a DL program for illness identification. 

The DL program employed CNN model and transfered the classification findings to the intelligent cognition 

system, that eventually settled on the rescue operations and returned it to the healthcare specialists for additional 

study. Amin et al. suggested a model that employed two prominent CNN models, the AlexNet and the VGG-16 

models, to run two sets of tests separately [70]. The VGG-16 model system attained ~86.6% accuracy, while the 

AlexNet system achieved ~87.3% accuracy, both of which are greater than the results produced by state-of-the-

art models. In another work, Khalid et al., sought to develop a system for automated spike identification in MEG 

signal information [80]. The common spatial patterns approach is used to extract characteristics that distinguish 

between spike and non-spike data. These characteristics were discovered to have a normal distribution. As a 

result, LDA was selected as the classification approach. The average sensitivity and specificity were ~91.0% 

and ~94.2%, respectively. These findings suggested that detecting MEG spikes with LDA is a potential method 

for diagnosing epilepsy. The use of CNN models in EEG data resulted in the automatic identification of 

different epilepsy types.  Acharya et al. used CNN to categorize EEG datasets without human intervention [81]. 

In addition, two types of activation functions were utilized in the model: (a) softmax and (b) rectified linear 

activation unit. The CNN-based model achieved 88.67% accuracy, 90% specificity, and 95% sensitivity. As a 

result, the application of CNN models for EEG-based categorization yields promising results in an illness 

diagnosis. 

4) Diabetes and Pancreatic Cancer  : Type 2 diabetes causes elevated sugar concentrations in blood and it 

is a common chronic diseases that can be deadly if not timely treated. Diabetes is becoming more common, with 

the majority of people falling as victims to Type 2 diabetes mellitus and it is misidentified in many cases. 

Effective diagnosis of unidentified diabetics will result in superior and more accurate disease handling and a 

lower overall death rate. Han et al. [82] used SVMs to develop a detection model for undiagnosed type 2 
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diabetic mellitus patients. Because SVMs are less understandable, instead of simply utilizing them in general 

form, a customized SVM program can be utilized for extracting the support vectors, which are then utilized to 

produce image-type information. Rules for diagnosing diabetes were eventually derived from this simulated data 

in a RF model. The mining ensemble strategy combines RF and SVM to enhance the accurateness of the initial 

SVM model. For automated segmentation of various abdominal organs, computed tomography images are used 

in CAD systems. The pancreas is particularly difficult to segment automatically due to its position in the body 

and substantial differences in its volume and form. Statistics based models for shape that are utilized for 

studying other type of organs does not produce appropriate outcomes when segmenting the pancreatic organ. A 

highly accurate approach for segmentation of pancreas can greatly enhance the analysis of CT images of 

patients suffering from diabetes and pancreatic tumor.  Farag et al. used RF classification to categorize image 

patterns produced by excess segmentation [83]. CT scan images are split into meaningful patches termed 

superpixels, from which various patch-level image attributes are extracted for training RF classifier. Jaccard 

index, Dice similarity coefficient, volumetric recall, and volumetric accuracy were the assessment measures 

employed during the analysis. The response maps presented match the classification and dense labeling 

demonstrate success in pancreatic segmentation, with a Dice similarity coefficient value of ~71% and Jaccard 

index value of ~58%. The suggested method's main contribution is a shorter calculation duration of ~7 minutes 

per each case tested, in comparision to much larger (>10 hours) for previous techniques. 

5) Chronic Kidney Disease  : Chronic kidney disease (CKD) is a worldwide issue of public health, 

impacting roughly 9% of global population and causing ~1.2 million fatalities in 2017 and it was the world's 12
th
 

biggest reason for humans death [84]. Subasi et al. [85] conducted a comparison case study research on CKD 

diagnosis utilizing ML models like SVM, KNN, DT, RF, and ANN. RF obtained accuracy of 100%, whereas the 

DT reached accuracy of 99%. According to this paper, ML models can attain good levels of accuracy that is 

adequate for self-directed operation without any intervention of humans. 

6) Medical Imaging  : ML is utilized in discipline of medical imaging (MI) that deals with the techniques 

and technology used for creation of images of bodily components for therapy and diagnosis. Nowadays, two 

types of medical imaging modalities are widely employed: MRI (magnetic resonance imaging) and X-ray 

radiography. These photographs are now taken and carefully inspected by a health specialist to detect 

irregularities. This technique not only consumes time, but it is also vulnerable to many errors. As a result, the 

use of ML models enhances sickness prediction, detection, diagnostic accuracy, and timeliness [86]. 

Researchers demonstrated how artificial neural networks (ANN) and other ML approaches may be used in 

conjunction with MI to allow computer-assisted sickness detection, diagnosis, and prediction [86]. DL 

algorithms, namely CNNs, have been developed as strong video and image processing tools, that are critical in 

MI [87]. Medical imaging applications frequently employ images as input data, like CT scans and X-rays [86, 

88]. CT scanners and X-ray machines are two examples of IoT devices that are commonly used in machine 

learning setups under healthcare settings [88]. For machine learning applications in medical imaging, supervised 

learning is commonly employed. 

7) Behavioral Modification or Treatment  : Behavioral modification (BM), as the name indicates, is the 

procedure of supporting a patient in modifying undesired behavior. BM is typical case for which common cure 

is given to patients with unhealthy habits that contributes to their poor health. The IoT permits the gathering of 

massive amounts of information about individuals, enable the use of ML for behavioral modification. As a 

consequence, ML models can be utilzed to assess individual behavior and recommend relevant alterations. 

Besides sending alarams and messages to urge modification, ML models may empower people with self-

awareness with tools for BM. ML may also be used to assess behavioral modification programs to decide which 

model is best for a certain type of patients [89]. ML techniques utilized in BM to include network classifiers like 

NB, DT, and SVM [90]. These algorithms obtain input data using feature mining that generates information in 

table format [90]. As a result, IoT devices that mine data can be used to explain the behavior of humans, like 

images, recordings, and videos, are relevant. 

8)  Clinical Trials Research  : Clinical trials are research studies that are carried out to establish the efficacy 

and security of behavioral, clinical, and pharmaceutical drugs. Because clinical trials include humans and they 

are typically the last phase in the clinical research protocols, which must be managed carefully to keep away 

from causing damage to the participators. ML may be utilzed to improve the clinical trial procedure by allowing 

the evaluation of freely accessible biological and clinical data, that is gathered from patient’s health records, and 

by realistic data facts procured from the sensing devices to be utilized to learn about the efficacy of therapies 

[91]. ML models permit clinical practitioners to evaluate enormous quantities of medical information to get 

intuition into the efficacy and security of a certain drug inside the patient’s body. For instance, machine learning 

can be utilized to develop drugs for treating diseases (like COVID-19) [92]. The initial step in using ML models 
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for clinical trials is to mine features from the available datasets [92]. As a result, the images and tables linked to 

clinical trials are included in the input data. The IoT devices utilized must be capable of collecting data based on 

the clinical trial variables. Common sensor data includes blood glucose, weight, blood pressure, and heart rate. 

9) Smart Electronic Records : Electronic medical records (EMR), that have substituted medical charts of 

patients, enable healthcare providers to provide better supervision by providing quick access to the patients 

information. Machine learning allows intelligence to be included in electronic health data. To put it another way, 

instead of merely storing patient information, EMR may be improved using ML to comprise smart applications. 

Smart EMRs, for example, might evaluate patient’s information, suggest the best healing, and help in making 

appropriate clinical decisions. Indeed, merging ML with EMR information has been proven to enhance 

optometry/ophthalmology [93]. Furthermore, advanced computerized records can analyze big data to assess the 

condition and protection of supervision delivered at a healthcare facility and identifies the discrepancy spots for 

further development. ML models that may be implemented into EMR includes linear regression, LR, ANNs, and 

SVM [93]. As input EMR data, images, text, time series, and tables, can all be used. For instance, real-time data 

from medical record of a patient may be utilized for predicting postpartum depression [94]. Recurrent DL 

architectures are accurate for sickness prediction when embedded in electronic records [95]. IoT sensor data 

utilized in these ML models include temperature, blood glucose, weight, blood pressure, and heart rate. The 

authors reported that the sensor data revealed signs of the illness under investigation. 

10) Epidemic Outbreak Prediction  : Rapidly spreading diseases in a society may be overwhelming and hard 

to control. As a result, participants in the medical business are familiar with the necessity of developing gadgets 

and approaches for forecasting and preparing for epidemic outbreaks. Because large amounts of data are now 

available, administrators, regulators, and medical professionals may utilize ML models to forecast epidemics. 

DNN (deep neural network) and LSTM (long short-term memory) learning algorithms are two ML approaches 

utilized for sickness prediction [96]. Input data for ML models can include time series, text, category, and 

numerical information. For instance, simultaneous healthcare information might be utilized in a ML system to 

anticipate potential sickness developments. ML algorithms use data such as hotspots, population density, geo-

mapping, vaccination levels, and clinical case classifications, to anticipate diseases [97]. Satellites and drones, 

for example, might be used to collect population densities and other geospatial information. Climate data and 

other kinds of environmental data that influence pandemic risk may also be gathered. Medical information of 

patient collected at the initial stage, like blood pressure, glucose levels, and temperature, is furthermore useful. 

In general, illness monitoring is crucial since it supports epidemic prevention and allows stakeholders to prepare 

for prospective outbreaks. 

11) Personalized Care : Patient-centered care requires personalized services. Patients have the right to 

therapy that is personalized to their own needs, expectations, and beliefs. Personalized healthcare increases 

patient fulfillment and usage of prescribed medical services while enhancing clinical outcomes. Machine 

learning algorithms may assist healthcare professionals in reviewing every patient's data and developing tailored 

healthcare plans, thus allowing them to give customized therapy to the patient [98]. Machine learning algorithms 

amalgamate dissimilar information resources to uncover patient-centric symptoms of illness development using 

the capabilities of health records [99]. The knowledge gathered favors making of clinical decisions by permiting 

medical practitioners to offer tailored patient-specific therapy. Time series, tabular, and text data can be used as 

input data formats for ML personalized care. Using the right ML algorithms, tabular information from the 

medical records of patients may be utilized to decide the best route for treatment of the patients. Similarly, the 

ML algorithms may be fed with IoT input data, like weight, blood pressure, blood glucose, and heart rate. 

12) Logistics and Security : This section covers a few ML applications that aim to enhance IoT-ML HC 

systems as a whole by enhancing logistics and security. These developments are especially vital because 

medical systems cannot be deployed unless safety issues are addressed, and as a result any improvements in 

logistics lead to enhanced performance of the medical systems, regardless of the intended IoT-ML HC 

applications [100, 101]. Overcrowding is a major issue in hospital emergency rooms. Patients must stay for 

longer durations for a medical bed to become ready, which harms their health and overall mortality rate, as well 

as hospital employee morale and efficiency. Such congestion may be prevented if the number of persons 

admitted to the hospital from the emergency department could be projected using hospital data, and the hospitals 

could further improve patient’s healthcare. Furthermore, in crises requiring a tough emergency healthcare 

service, like COVID-19, it is vital to appreciate the requirement of logistics and security to prioritize patients 

according to their urgency, as well as in controlling of the time for medical staff’s response, and making of the 

patient’s treatment process more proficient. Because of insufficient resources, sensing network devices of body 

are usually exposed to safety laws in safeguarding susceptible patient health information. As a result, numerous 

techniques for providing security for wireless body area networks, or WBANs, have recently been developed 
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[102, 103]. With authentication assaults, attackers can participate in wireless communication networks among 

WBAN sensor nodes and disrupt the network functionality. Iris scanning, face recognition, ECG 

(electrocardiogram) patterns, PPG (photoplethysmogram) patterns and fingerprint scanning, are among the 

physiological, behavioral, and biometric attributes used in the cryptosystem approach. 

 

 

 

Fig. 7. Images of some IoT-ML based healthcare systems 

 

The number of IoT-ML-enabled healthcare system applications has continuously increased, and current research 

plans to include IoT in a variety of healthcare fields, such as efficient automated diagnosis, illness spread 

control, and offering a better therapy. The number of IoT-ML-enabled healthcare systems applications has 

constantly grown, and current research plans to include IoT-ML into a variety of fields of healthcare, including 

disease spread control, effective automated diagnosis, and improvised therapy. Figure 7 displays the numerous 

IoT-ML healthcare application systems (prognostic, diagnostic, spread control, monitoring, logistics, and 

assistive systems) [19]. Table 2 outlines the IoT-ML algorithms used in healthcare systems, as well as their 

advantages and disadvantages [17, 19]. 

TABLE II.  SOME IOT-ML ALGORITHMS WITH HEALTHCARE APPLICATIONS BENEFITS AND LIMITATIONS. 

Healthcare Application  IoT-ML Algorithm  Benefits Limitations 

Heart disease diagnosis 

 

KNN Wearable healthcare 

gadgets allow for real-

time diagnostics. 

More precision is 

necessary for actual 

applications. 

Lung cancer diagnosis Optimal SVM 

 

Effective feature 

selection and parameter 

optimization result in an 

approach that is both 

accurate and practical. 

The use of deep learning 

algorithms can result in 

even more multi-fold 

gains. 

Pathology detection 

(using EEG) 

CNN Shows the potential for 

ML-based integrated 

smart frameworks to be 

used in smart health. 

Requires advanced 

infrastructure, such as 

deep learning servers and 

a cloud-based cognitive 

engine. 

Type-2 diabetes 

diagnosis 

SVM + RF The ensemble technique 

utilized improves 

dependability by making 

the model far more 

transparent than a basic 

black box model. 

The resulting rule sets 

are quite tiny. 

Chronic kidney disease 

diagnosis 

SVM, DT, RF, ANN Extremely high levels of 

accuracy show that the 

technology can be used 

without the requirement 

for human interaction. 

It takes a very long time 

to become usable. 
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Early stage onset  heart 

disease prediction 

NB Simple to utilize 

interface and fewer 

training needed. 

Real- operation in world 

necessitates the 

incorporation of a 

number of minor 

parameters not covered 

in the NB model. 

Influenza virus detection NLP Training time is reduced, 

and no preprocessing for 

missing values is 

required. 

The information utilized 

is derived from restricted 

resources. 

Epilepsy risk levels 

(classification) 

KNN Power spectral densities 

with reduced dimensions 

were employed to 

achieve higher output 

values. 

There are a lot of false 

alarms. 

Hemorrhagic shock 

recovery prediction 

Logistic regression (LR) In numerous testing 

methods, it outperforms 

the baseline classifier. 

The test dataset is small. 

COVID-19 disease 

identification 

CNN SARS-Cov-2 strains are 

easily recognized from 

other viruses. 

A modest number of 

genome sequences were 

used to test the 

hypothesis. 

Spread control of Ebola DT RFID and wearable 

sensors allow for simple 

large-scale application. 

There is no model for 

estimating missing data. 

Ocular data classification 

for navigation assistance 

applications. 

SVM, ANN  Can help physically 

challenged persons and 

enhance their quality of 

life through improving 

communication. 

There is a lot of noise in 

the utilized EEG signals 

that has to be reduced by 

preprocessing. 

Robotic control with 

EEG impulses and 

typing systems 

DL The system is intended 

to be very adaptable to 

the user. 

The ideal response 

cannot be guaranteed on 

the first attempt and 

takes numerous attempts 

to achieve the desired 

outcomes. 

Identification of hand 

gestures for stroke 

rehabilitation 

ML (dimensionality 

reduction) 

Highly precise hand 

gesture recognition 

enables robot hands to 

replicate motions and aid 

in the rehabilitation of 

individuals who have 

suffered physical 

injuries. 

Both training and 

verification data come 

from the same or a single 

source, and data from 

different patients is 

needed to make the 

model more user-

independent. 

Smartphone camera to 

measure blood pressure 

(BP) using cuff-less 

monitoring system. 

LR Blood pressure 

monitoring that is non-

invasive and portable. 

A large number of high-

end smartphone cameras 

are required. 

Continuous patient 

monitoring system to 

predict strokes. 

RF, NB Higher performance is 

achieved by combining 

various algorithms. 

For autonomous data 

gathering, better ML-

based medical sensor 

systems are necessary. 

Using real-time 

monitoring data, predict 

future glucose levels. 

ANN The model can anticipate 

emergency diabetic 

cases. 

For sudden data changes, 

it is inaccurate. 

Fall alarm and fall 

forecast system 

NB The polynomial NB 

algorithm is utilized, and 

it surpasses all analogous 

ML methods. 

The research is primarily 

aimed at hypertensive 

senior citizens. 

Health monitoring 

system for Infants  

Gradient boosting DT Predicts whether or 

whether preterm 

newborns have 

bradycardia, allowing for 

early intervention. 

A small number of 

bradycardia cases were 

studied. 

System for patient 

prioritizing  

K-means Helps in the efficient 

deployment of resources 

and the priority of 

emergency cases. 

Cloud-based, better 

range necessitates WiFi, 

which raises expenses. 
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Security system based on 

Gait detection. 

ANN Provides resistance to 

hacking methods such as 

medical dictionary 

attacks, and requires less 

computing than 

fingerprints. 

The projected system is 

yet susceptible to brutal 

assaults; however the 

entire system is unlikely 

to be hacked. 

Raw clinical data 

classification using ML 

NLP Structured data saved 

electronically may 

substantially increase the 

efficiency of the medical 

system. 

It is untrustworthy with 

very complicated facts, 

such as lexical 

semantics. 

Coexistence likelihood 

determination. using 

wireless technology 

LR Over-fitting has been 

reduced by employing 

least absolute shrinkage 

and feature selection in 

the selection operator. 

Only a few protocols are 

applicable. 

ML-based medical 

imaging 

CNN, ANN Improve the accuracy 

and patient-centeredness 

of the imaging process 

by automating this 

procedure and enhancing 

the quality of training 

datasets. 

High reliance on quantity 

and quality of input 

(training datasets). 

Moral and lawful 

concerns around the 

usage of machine 

learning in medicine. 

It is sometimes hard to 

describe the logical 

outcomes of DL 

approaches. 

Illness diagnosis Image-based DL  Improving decision-

making quality and 

efficiency by 

incorporating machine 

learning into electronic 

medical records to 

facilitate quick and 

accurate illness 

diagnosis. 

The absence of clear 

rules and regulations 

governing the usage of 

ML in disease diagnosis. 

It is difficult to obtain 

well-annotated data for 

supervised learning. 

Behaviour treatment or 

modification 

 NLP ML incorporation into 

behavioural modification 

program scans, assist in 

decision making (of what 

is workable and what 

cannot be considered 

further). 

The absence of a 

knowledge system for 

behavioural modification 

intervention that includes 

information science, 

protocol, and sources for 

interpretation of reports, 

an automatic annotator, 

ML and reasoning-based 

models, and a customer 

interface. 

Research involving 

clinical trials 

 

DL  Continuous learning 

from clinical data 

collected in real-time to 

increase the usability of 

deep learning in clinical 

research studies. 

The issue in applying DL 

models to complicated 

healthcare data. 

The requirement for 

large quantities of 

properly-labelled input 

(training data). 

Machine learning raises 

moral concerns. 

Smart EMR  

(electronic medical 

records) 

DL, supervised ML Intelligent medical 

systems capable of 

illness detection, 

progression prediction, 

and risk assessment for 

the proper management 

of various illnesses or 

ailments. 

Preparing data before it 

is put into a machine 

learning system is still a 

difficult undertaking. 

Furthermore, including 

patient-specific features 

into machine learning 

models is tricky. 

Prediction of epidemic 

outbreak 

 

DNN The application of 

predictive models to the 

surveillance and 

forecasting of a variety 

of infectious illnesses. 

Predictive models' poor 

accuracy. 

The decision-making 

process. 

Parameters to be used 

with machine learning 

models. 
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Prediction of heart 

disease 

 

DL, ANN Clinical decision-making 

will incorporate patient-

centred predictive 

analytics of cardiac 

illnesses, allowing for 

the deployment of 

preventative treatments. 

The absence of ethical 

principles to govern the 

adoption of algorithms 

for prediction of heart 

disease. 

ML algorithms are 

incapable of solving very 

abstract reasoning issues. 

COVID-19 diagnostic 

and prognostic models  

 

DL models Gather large-volume, 

high-feature data for 

training DL models of 

COVID-19 prediction. 

Because of the 

insufficient training 

datasets employed, the 

created models are 

troublesome. 

Personalized healthcare DNN, DL, supervised 

ML, 

Unsupervised ML, and 

others 

Developing systems that 

can be connected into 

EMR to encourage 

customized medicine, 

and for providing 

person-centered care. 

Continuous collection of 

high-quality training 

datasets is required. 

 

B. IoT-ML Healthcare Challenges 

Table 2 demonstrates the intimate relationship between IoT-ML and healthcare systems [17, 19]. Many studies 

have been undertaken to illustrate the healthcare applications of IoT-ML medical systems [104]. Figure 7b shows 
images of certain medical systems that use IoT healthcare data to feed ML algorithms, as well as how the ML 

results offer solutions like patient behavior analysis, assistive care service, and sickness diagnosis. As a result of 

technological advancement, IoT-ML-based operative medical systems support will continue to have a substantial 

impact on human life. However, assistive healthcare will have to address problematic challenges like cost and 

usability [105]. Furthermore, privacy of internet users and verification flaws in IoT-ML sensing devices may 

draw the notice of hackers and pose difficulties since the vital medical records/data of the patients will be 

stolen/hacked if not adequately safeguarded [104, 105]. 

1) Resource Scarcity  : Most IoT devices have limited energy and computational capabilities, like 

smartphones, sensors, RFIDs, actuators, gateways, and microcontrollers [106]. Moreover, the information given 

through these heavily dispersed limited-source sensing devices shows repeated and similar blueprints. 

Broadcasting this type of connected information over the internet requires a lot of energy, degrades QoS, and 
affects throughput [107]. To some extent, the issue of resource scarcity is addressed by combining IoT with the 

cloud-based computing archetypes. Nonetheless, it raises the expenses and difficulty to effectively handle the 

data. Because of the exclusive behaviour of IoT-based frameworks, numerous source organization issues like 

source modeling, provisioning, discovery,  scheduling, monitoring, and estimating, are more important [108]. 

Moreover, in this context, optimization within resource allocation methodologies should be examined further. 

Because most present solutions are novel, lavish, lightweight, and energy-competent information aggregating 

methods that depend on IoT-ML are required. Furthermore, distinct systems that distribute workload across 

numerous IoT frameworks and fulfill the source limits of these IoT-ML networks, but deliver healthcare data 

with sufficient accuracy should be developed [109]. 

2) Data Security and Privacy  : The IoT applications in healthcare is giving individualized services, i.e., 

rapid and customized accessibility to healthcare support, that was previously unachievable. For all of these IoT 
applications, healthcare, and technology equipment interact to deliver a variety of solutions. It is estimated that 

by 2025, health-related IoT-based ML technology would account for more than 40% of all IoT-related 

technology, thus accounting for a gigantic marketplace value share of USD >137 billion [12, 110]. Such 

improvements in this industry are groundbreaking; nonetheless, they must be handled with prudence due to the 

difficulties raised by healthcare-related data security, privacy, and sensitivity [111]. Contaminated data 

transmitted upstream not only destroys but also harms the underlying data aggregation process [112]. It exposes 

the underlying networks to various security risks, that include eavesdropping, DoS (denial of service), Sybil, 

sinkhole, and sleep deprivation assaults. Because of the field's rapid expansion and the increasing amount and 

complexity of possible software and hardware vulnerabilities, these risks remain a greater challenge. 

Furthermore, sensitive and secret healthcare data, like individual data, EMRs, family record, and genetic 

information, must be stored in private hard disks/devices. About 72% of malicious traffic is likely to target 

healthcare data [113]. As a result, it is vital to protect this kind of medical information from giving access to 
hackers via maintaining physical and online privacy and safety regulations [114]. Misconfigured, low security 

devices, and incorrect system settings are all issues. Additionally, information from these several kinds of 

sensing devices are mostly diverse in nature and are typically kept by third party, building data security, privacy, 

and governance a challenging problem [115]. Moreover, standard security solutions are not preferable choices 
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owing to the source limits of IoT-ML healthcare devices. Proposal of energy-efficient and lightweight 

information collection systems which not only make safe, but also protect data privacy, confidentiality, and 

security is a fascinating topic that should be researched further. 

3) Interoperability  : We have recently witnessed the great progress in computer software and hardware 
technologies, but the fundamental issue is need for worldwide standards that can be acknowledged and approved 

upon by the total public across the world. As a result, interoperability difficulties with healthcare IoT-ML 

devices are substantial. To promote healthy lifestyles, designers must focus not only on creation but also on 

interoperability across all features of IoT-ML-based healthcare, like body area sensors, smart wearables, and 

enlarged omnipresent healthcare [116]. Interoperable technology provides improved internet speed, fewer 

accidental power outages, and cheaper upholding expenses. Clinical information rhetoric interoperability should 

be the focus of future research. 

4) Energy Management  : Energy management (EM) is other problematic portion of IoT-ML healthcare 

implications. Energy is often a constraint for wearables and sensors related to the human body. They only have a 

finite amount of energy [117]. The battery replacement in different electronic equipment and sensors is tedious, 

if not unfeasible in some situations. Additional healthcare staff are required to check these sensing devices and 

electronic gadgets regularly for replacement of batteries, when the energy surpass specified parameters and 
additional maintaining expenses. It can cause mismanagement and fatigue because of the active nature of the 

healthcare staff’s job. Energy efficiency has become an important factor in determining the accomplishment of 

the essential implications [117]. To surmount these difficulties and boost the conservation of energy, less power 

consuming sensors which does not need regular battery replacements yet offer a continuous source of electricity 

are essential. Furthermore, power consumption minimization models with smart EM tactics have gotten less 

notice and, as a result, they demand immediate attention from IoT-ML healthcare professionals [118]. An 

additional research area is the optimization of direction-finding systems which employ correlation of data before 

reaching their final destination, sometimes known as ‘data aggregation’ techniques. These solutions eliminate 

duplication while cutting the communication costs, conserving the energy, and extending the network lifetime. 

5) Big Data Analytics  : One tough part of IoT-ML healthcare is big data analytics, which addresses massive 

volumes of unstructured information. Significant breakthroughs in computer software and hardware 
technologies, and incorporation of them in broader and unique IoT-ML healthcare applications have lately 

occurred. Furthermore, using a massive amount of networked information resources and global infrastructure 

platforms for communication and information, the IoT-ML's future development forecast is much overstated. 

Therefore, vast amounts of information are generated. This vast and generally redundant information is sent 

around the global network for decision-making and analysis. The transmission of this type of big data via the 

global network may harm the performance of network. This presents a plethora of demanding problems which 

must be addressed with considerable prudence [119]. It would be exciting to investigate how various ML- and 

DL-enabled methodologies may be utilized to get perception into such big data for efficient maneuver and 

improved decision-making in this IoT healthcare environment [120]. It is vital to develop new big data analytics 

software programs and methodologies that execute investigation and mine relevant data. Ground-breaking noise 

reduction strategies are necessary to improve the information signal, aggregated data value, and network total 

power consumption [121]. More crucially, most medical gadgets perform simultaneous monitoring and 
information analysis of the patients. It is of interest to observe new IoT-ML models that leverage simultaneous 

data analytics to monitor and react to current events in the future. To enhance security, QoS, and computing 

complexity, new data collection algorithms with anomaly minimization must be developed. Furthermore, data 

aggregation is more closely related to the network's fundamental structure. The underlying topologies have a big 

influence on how certain techniques function [122]. Clustering works better in stationary networks where the 

configuration of network stays stable throughout time. However, they must be analyzed in both dynamic and 

heterogeneous situations [123]. Finding the appropriate place for these IoT-ML healthcare devices must be 

investigated more in next-generation IoT-ML to serve diverse potential applications of healthcare in the years to 

come. 

V.     FUTURE PERSPECTIVES 

The main benefit of IoT-ML automation in monitoring of diseases and patient-specific tasks is that it prevents 

wasting of time and intervenes while all healthcare professionals are engaged, such as during an emergency 

situation. This industry's AI technologies are important for rescuing lives all through pandemics (such as COVID-
19). Wearables (monitoring devices) collect and transmit information to a cloud-server storing database, which a 

physician may later use to make a diagnosis of the patient and prescribe medication. During pandemics, victims 

may be given smart drugs and IoT-ML-based AI gadgets which supervise and gather patient-specific information 

for obtaining the medical database. These IoT healthcare devices let physicians and relevant ML running 

computer machines comprehend sickness blueprints and signs, thus permitting doctors to understand and evaluate 

disease indications to establish a quick and harmless disease analysis. Because IoT-ML strategy removes the 
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direct touching of patients suffering from lethal aerial viruses during quarantine, such medical systems can 

increase safety of both patients and healthcare staff. In recent future, cloud-based computing can be a significant 

component of the 6G wireless network driven IoT-ML healthcare industry [124]. It is advantageous to link a 

variety of IoT-ML healthcare devices to comprehend information via examination and cloud-storage. Other 
critical aspect of cloud-based computing is its capacity for storing of big data, while meeting the requirements of 

the medical systems. Because of its data-transferring capabilities, cloud-based computing may let various IoT-ML 

healthcare devices to freely obtain the patients data. Cloud computing is presently confronted with several 

difficulties that must be resolved first. Such concerns may uncover novel research avenues for academicians and 

scientists looking for improvement in the usability of IoT-ML methods in the healthcare sector. 

A couple of the IoT-ML issues are safety and confidentiality of patient-specific data. Because EMRs include 

individually identifiable health information about patients, they are highly sensitive in the healthcare industry 

and must be adequately maintained. As a result, severe legislation, like the HIPAA (Health Insurance Portability 

and Accountability Act), was created to oversee the operation of collecting and analyzing this patient-sensitive 

information. This is a major obstacle for current IoT-ML and data mining approaches like DL, that frequently 

requires big data (for training). Exchanging this patient-specific sensitive data through internet, for improvement 

of healthcare excellence, may risk patient’s privacy. Several approaches for ensuring patient privacy through the 
use of machine learning technology have been presented. Federated learning (FL) is a unique ML model that 

utilizes sophisticated DL algorithms for training and allowing portable IoT devices and webservers to construct 

a single, strong IoT-ML model with no sharing of sensitive patient-specific information. FL assists scientists in 

addressing key problems like heterogeneous data access, data security, and data access rights. Another challenge 

for IoT-ML is storing data in a central cloud-based computing environment. This can cause an inaccurately 

trained model, lowering the accuracy of the predicted outcome. As a result, decentralized storage of data is now 

considered as best data management procedures. ‘Blockchain’ is an emerging technology which allows for 

decentralized storage of data. Some devices can monitor blood pressure, heart rate, and body temperature of a 

patient, all at the same time [125]. They are essential in collection and storing of patient’s data that may aid in 

disease diagnosis and cure. The amalgamation of IoT and ML may aid healthcare practitioners to keep up with 

the new advances, which are essential for a healthy society. Because IoT-ML healthcare data may be preserved 
in a centralized data bank and made available only to the genuine doctors and scientists for real-time sharing of 

results, analysis, and cross-examination, storing of diagnostic information and disease-related symptoms data of 

patients is key for ensuring disease eradication or vaccine/drug discovery for future growth of healthcare sector. 

VI.      CONCLUSIONS 

The healthcare business is very difficult considering accountability and tight regulations, making it a key and 

important area for innovation. The IoT has created a new universe of promises for healthcare business, through 

the capability of tackling wider array of challenging issues. Using medical IoT opens up new avenues for 

supervision of patient health condition remotely, telemedicine, etc. This is all made possible due to the 

advancements in IoT-ML models for solving healthcare issues. In this review, we summarized the dominant ML 

models, discussed numerous roles of ML in healthcare, and investigated amalgamation of IoT and ML in the 

healthcare systems to anticipate future developments. As mentioned earlier, IoT and ML have revolutionized the 

healthcare business by enabling individuals to wear equipment such as smart devices and premium gadgets, 

which supervise the patient’s health status and transmit useful data to a database that physicians and other 

healthcare staff can readily access. The IoT-ML healthcare devices might examine a patient's important 
symptoms and body organs and later transmit this information to a selected healthcare database. Furthermore, the 

IoT-ML healthcare systems gather and report the disease existence and symptoms of the patients. This is a key 

innovation that will help the healthcare sector provide better treatment to the patients. The usage of wearable 

gadgets, sensors, monitoring devices, and smart drugs, appends significance to the healthcare business. The 

amalgamation of IoT and ML technologies may help further in the monitoring and prediction of disease 

symptoms and forecast the future trends associated with sickness patterns of the patients. 
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